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Department of Physics, Faculty of Science. Osaka University, Toyonaka. O s t a  560. Japan 
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Abstract I[ has been shown that there exists an additional magnetic phase transition of the 
magnetization curve for the S = 1 SU(3) antiferromagnetic spin chain at zero temperature. As 
a the magnetic field decreases from the saturation field, there is a phase chmge at a critiwl field 
h,. where the magnetization curve Venus the magnetic field has a cusp. The critical field is a 
boundary between two smes. one of which contains the particles with he spin t I and 0 and 
the other with the spin t 1.0 and - 1. In  this paper we estimate the critical field h, of the phase 
transition by examining the stability of these s u e s .  

Low-dimensional quantum systems have attracted much attention for a long time. One of 
the most interesting studies is that of Haldane’s conjecture [ I ]  on the excitation gap between 
the singlet and triplet ground-state energies for the spin-l Heisenberg quantum spin chain. 
The ground state is theoretically shown to consist of the valence-bond-solid state and have 
an energy gap and an exponentially decaying correlation function [Z]. On the other hand, 
as a result of experimental techniques such as the generation of high magnetic field and 
the production of quasi-one dimensional systems being developed, many experiments have 
been performed on S = 1 Heisenberg antiferromagnets and they have given experimental 
evidence for Haldane’s conjecture [3, 41. So far most studies on quantum spin chains have 
been carried out for systems at low magnetic field, so the behaviour of quantum spin systems 
in the high-magnetic-field region has not yet been fully examined. However, very recently 
detailed magnetic properties near the saturation field for quasi-one-dimensional systems such 
as NENP and CsNiCI, were observed by Nojiri er af [5 ] ;  moreover, interesting theoretical 
work on quantum systems in the high-magnetic-field region has been done and curious 
phenomena have been found [6, 71. It is important to investigate magnetic properties of 
low-dimensional systems in high magnetic fields. 

Several years ago, Parkinson [SI showed that the magnetic field dependence of the 
magnetization curve for the SU(3) antiferromagnetic quantum spin chain at zero temperature 
has a cusp which corresponds to the discontinuity of the magnetic susceptibility in the finite- 
magnetic-field region. We extended his result and pointed out that the integrable SU(M) and 
SU,(M) spin chains undergo M - 1 phase transitions [9]. The SU(M) quantum spin chain 
has already been solved by Sutherland [lo] using the Bethe msutz method. The original 
eigenvalue problem is reduced to a set of integral equations. We solved these integral 
equations numerically and estimated the critical magnetic field from figures showing the 
magnetization curve versus the magnetic field. In this paper, we estimate the critical field 
by examining the stability of the states. 
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The Hamiltonian of the SU(3) quantum spin chain of N sites in  an external magnetic 
field h is given by 

where the S, are the spin operators for S = I .  In the Sf-diagonal representations, the 
operator S, Si+] + (Si 'S,t1)2 conserves the number of sites with 'spin' (value of Sf)  of 
each of the three possible types +1,0 and -1. We define the number of particles with 'spin' 
+1, 0 and -1 as n+l, no and n-I.  respectively. Imposing the periodic boundary condition, 
the eigenvalue problem of the above Hamiltonian ( I )  is reduced to a set of transcendental 
equations for rapidities a and p by the Bethe ansarz method [IO]. These equations arc the 
following ones 

Taking the logarithm of equations (2) and (3), and taking the limit N + CXJ with the ratio 
(no + n - l ) / N  and n - l / N  kept finite, we have a set of integral equations for root-density 
distribution functions p1 ( k )  and & ( k )  

" L 
K ] ( X )  = -- 

1 +X2' 
The integration bounds { B j ]  are related to { n j )  by the following equations, 

The magnetization per site U = xi  S ; / N  and the energy per site c are given by 
Bi 

a = ] -  !:, PI(@) d a  - LB2 PZ(B) d B  

where, for simplicity, we have taken the energy of the ferromagnetic state as zero energy. 
Parkinson solved these equations. (4), (3, (10) and (1  I ) ,  numerically for various values of 
BI and B2- so that he obtained the lowest energy €0 for a given U ,  The magnetic field for 
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a given magnetization can be calculated from the derivative of the energy with respect to 
the masnetization: 

h = - - .  
ao 

In the high-magnetic-field region the integral set of equations for the ground state becomes 

2np1 ( U )  = g(a )  + (13) 

U = 1 - p,(a) da .  (14) 

These equations correspond to the case p2 = 0 (namely, n-j = 0) in equations (4) and 
(lo), and are the same as the integral equations of the S = 112 isotropic antiferromagnetic 
Heisenberg model. On decreasing the magnetic field from the saturation field, the value of 
p? in the integral equations for the ground state becomes non-zero at the critical magnetic 
field h,. The ground state in the finite magnetic field has a phase change from a state which 
consists of particles with spins +I and 0 in [he higher-magnetic-field region to one with spins 
+ I ,  0 and -1 in the lower-magnetic-field region. At the critical field h, the magnetization 
curve as a function of the external magnetic field has a cusp, which corresponds to the 
discontinuity of the magnetic susceptibility. 

In order to calculate the critical magnetic field h,.  we compare the stability of the states 
in the subspace n-l = 1 with ones in the subspace 1 1 - 1  = 0. In the case of the states in the 
subspace n - ]  = 0. a set of the integral equations leads to (13) and (14) as mentioned the 
above. On the other hand. in the case of the states in the subspace n-l = I. we recall the 
set of the transcendental equations (2) and (3), which becomes 

KI(U - d ) p i  (a') d d  l:, 
l:) 

where B is the rapidity of the particle with spin -1. We take the logarithm of these 
equations: 

2Ntan- '(2ay,)=2nl, ,  -2 taK12(f fa  - , 9 ) + ~ 2 t a n - ' ( a 0 - a u , , )  (17) 

o = 2n J - (18) 

Hence we set 0 = 0, which corresponds to the long-wavelength limit of the -1 excitation 
with spin and realizes the lowest-energy state in the subspace n-j = 1 .  Even if there exists 
an external magnetic field, the values of the rapidities a are distributed symmetrically with 
respect to the origin. Setting J = 0, equation (IS)  is satisfied. In the limit of N -+ CO and 
no --t CO with the ratio n o / N  kept finite, we have the 1 /N  expansion of the root-density 
distribution function 61 (a):  

U' 

2 tan-' ~ ( 8  - a..). 
d 
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The magnetization and the energy in the subspace n-l = 1 lead to 

(20) 

(21) 

Our aim is to compare the value of (I  I )  with that of (21). For the purpose of this comparison, 
manipulations used in [ 11, 121 are very useful. In order to examine the energy difference 
of I / N  order, we introduce the distribution function #)(or): 

1 F ~ ( C Y )  do  - - d = 1 - I:, N 

a = -/;, g ( ~ ) P l ( o r )  d a  - hir.  

(22) 

where pl(or) is the distribution function in the integral equation (13). Putting formula (22) 
into the integral equation (19). It is easy to show that the distribution function pf”(cu) 
satisfies the same equation as (13), that is, p[]’(or) = p~(a). In ordcr to indicate the 
dependence on the integration bound B of the magnetization and the energy, we rewrite the 

1 
dl (a) = p1(a) + p l l ) ( a )  

magnetization and the energy as follows: 
E 

u“)(B) = 1 - 1, p l (a )  d a  

€‘O)(B) -  PI(^ da. 

Since we are investigating the stability of 
magnetization (14) is equal IO (20). 

i energy wi fixe 

(24) 

magnetization, the 

BI 1 
I - LE, p l (a )  d a  = 1 - 

N 
We substitute formulas (22) and (23) into the above identity (25), so that we obtain 

where we replaced the integration bound 8, by B,, since this equation is an approximation 
of order 1 / N .  From the relation (26), we can obtain the difference between BI and &, 

where we have taken the difference between B, and 8, up to the order of 1/N. As for the 
difference between the energies, we obtain 
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In order to derive the energy difference, we need to calculate the derivation of the 
magnetization and the energy with respect to the integration bound Bl. For simplicity, 
we introduce a short-hand vector-matrix notation of the integral equation (13): 

2RP1 (a) = g ( a )  + K1:c.d *PI(”) (29) 
where the symbol * represents the usual matrix product and integation over a‘ From -BI 
to 51 113, 141. The derivation of PI with respect to the integration bound BI leads to 

where pI is even function. Taking the derivatives (23) and (24) with respect to BI, we 
obtain 

Using (30), we find that 

1 

* [ 1 +(a’+ B I ) ~  + 1 +(a’- B I ) ~  

I d a ]  * [ 1 + (a’ + B,)* + I + (a’ - BI)? 
1 

These equations, (31) and (32), yield the energy difference (28): 

AE(BI) = ;’(El) - E(’)(BI). (33) 
We solve the equation Ae(BI)  = 0 numerically by converting the integral equation into 
a matrix equation for various integration bounds BI and obtain B, = 0.70928.. .  . On 
increasing the integration limit Bl from 0 to 00, the states in the subspace n-I = 0 are 
more stable than those in the subspace n - l  # 0 in the region 0 < BI c 5,. When Bl is 
in the region B, < El < CO. the states in the subspace n-] # 0 are more stable than those 
in the subspace = 0. In order to obtain the critical field, we use (12), (31) and (32) 
(cf. [15]). 

where 

1 I d a  
*[ l  + (a’+ BI)* + I + ( ~ ‘ - B I ) ’  
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Putting B, = 0.709 28 . . into (23) and (341, we obtain the magnetization 0;. = 0.556 2 0 . .  . 
and the critical field h ,  = 0.941 3 8 . .  ., which are in agreement with the Parkinson's results 
[XI.  

It has been already shown that the S = 1 SU(3) quantum antiferromagnetic spin chain 
undergoes a phase transition in the finite-magnetic-field region. The transition is of second 
order with a cusp in the magnetization curve. This new phase change marks the boundary 
between two states, one of which contains the particles with the spin + I  and 0 and the 
other with the spin + I ,  0 and - I .  In this paper the critical magnetic field h, is obtained 
accurately by comparing the stability of the two states. 

The Hamiltonian (1) is easily generalized to the following one: 

where p ranges from -cm to +W. We have only discussed the case of p = 1. When ,9 # I ,  
it is interesting to investigate the possibility of this phase change, which corresponds to the 
cusp of the magnetization curve. For the S = I Heisenberg spin chain (namely, p = 0). 
Yamamoto and Miyashita [7] performed a quantum Monte Carlo calculation for both thc 
open and the periodic boundary condition and investigated the magnetization curve at finite 
temperature. Comparing the result under the periodic boundary condition with the open 
one, they have shown that as the magnetic field increases, the state of the system changes 
from the Haldane phase to a different phase. It is very interesting to investigate whether 
this phase change corresponds to the cusp of the magnetization curve or not. 

We point out that our approach is valid for non-integral systems which are integrable in 
the high-magnetic-field region. Lo this paper we utilize the integrability of the system 
in high-magnetic-field region and exactly calculated two-body S-matrices. If a set of 
the equations which correspond to (15) and (16) are derived exactly, the critical field is 
calculated by the method in this paper. 
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